# The QCDOC Project Overview and Status

**DOE LGT Review** 

May 24-25, 2005

Norman H. Christ

### **Outline**

- Project goals
- QCDOC collaboration
- Architecture
- Software
  - Operating system
  - Run-time environment
  - Programming environment

- Construction and packaging
- Construction status
- Final bring-up issues
- Application performance
- Future plan

# **Project Goals**

- Lattice QCD provides the only firstprinciples window into non-perturbative phenomena of QCD.
- All significant errors are controlled and can be reduced with faster computers or better algorithms.



- Simple formulation enables targeted computer architecture.
- Regular space-time description: easily mounted on a parallel computer.



8192-node, 0.4 Tflops QCDSP machine

# Project Goals (con't)

- Massively parallel machine capable of *strong scaling*: use many nodes on a small problem.
  - Large inter-node bandwidth.
  - Small communications latency.
- \$1/sustained Mflops cost/performance.
- Low power, easily maintained modular design.

# **QCDOC** Collaboration

(people)

- Columbia (DOE)
  - Norman Christ
  - Saul Cohen\*
  - Calin Cristian\*
  - Zhihua Dong
  - Changhoan Kim\*
  - Ludmila Levkova\*
  - Sam Li\*
  - Xiaodong Liao\*
  - Guofeng Liu\*
  - Meifeng Lin\*
  - Robert Mawhinney
  - Azusa Yamaguchi
- BNL (SciDAC)
  - Robert Bennett
  - Chulwoo Jung
  - Konstantin Petrov
  - David Stampf

- UKQCD (PPARC)
  - Peter Boyle
  - Mike Clark
  - Balint Joo
- RBRC (RIKEN)
  - Shigemi Ohta
  - Tilo Wettig
- IBM
  - Dong Chen
  - Alan Gara
  - Design groups:
    - Yorktown Heights, NY
    - Rochester, MN
    - Raleigh, NC

# **QCDOC** Collaboration

(money)

| Institution/funding source | Design and proto-typing | Large installations |
|----------------------------|-------------------------|---------------------|
| Columbia/DOE               | \$500K                  | \$1M (UKQCD)        |
| RBRC/RIKEN                 | \$400K                  | \$5M                |
| UKQCD/PPARC                | \$1 <b>M</b>            | \$5.2M              |
| BNL/DOE                    | -                       | \$5.1M              |

Personnel and site prep costs are not included.

# **QCDOC** Architecture

- IBM-fabricated, single-chip node. [50 million transistors, 5 Watt, 1.3cm x 1.3cm]
- Processor:
  - PowerPC 32-bit RISC.
  - 64-bit, 1 Gflops floating point unit.
- Memory/node: 4 Mbyte (on-chip) & o2 Gbyte DIMM.
- Communications network:
  - 6-dim, supporting lower dimensional partitions.
  - Global sum/broadcast functionality.
  - Multiple DMA engines/minimal processor overhead.
- Ethernet connection to each node: booting, I/O, host control.
- ~7-8 Watt/node, 15 in<sup>3</sup> per node.

### **Software Environment**

#### Lean kernel on each node

- Protected kernel mode and address space.
- RPC support for host access.
- NFS access to NAS disks (/pfs).
- Normal Unix services including stdout and stderr.

#### Threaded host kernel

- Efficient performance on 8-processor SMP host.
- User shell (qsh) with extended commands.
- Host file system (/host).
- Simple remapping of 6-D machine to (6-n)-D torus.

#### • Programming environment

- POSIX compatible, open-source libc.
- gcc and xlc compilers

#### • SciDAC standards

- Level-1, QMP protocol
- Level-2 parallelized linear algebra, QDP & QDP++.
- Efficient level-3 inverters
  - Wilson/clover
  - Domain wall fermions
  - ASQTAD
  - p4 (underway)

# Network Architecture

- Red boxes are nodes.
- Blue boxes mother boards.
- Red lines are communications links.
- Green lines are Ethernet connections.
- Green boxes are Ethernet switches.
- Pink boxes are host CPU processors.



## **QCDOC Chip**



50 million transistors, 0.18 micron, 1.3 x 1.3 cm die, 5 Watt

# Daughter board (2 nodes)



# Mother board (64 nodes)



# **512-Node Machine**



## UKQCD Machine (12,288 nodes/10 Tflops)



### **Brookhaven Installation**



RBRC (right) and DOE (left) 12K-node QCDOC machines

# **Project Status**

- UKQCD 13,312 nodes --\$5.2M 3-5 Tflops sustained.
  - Installed in Edinburgh 12/04.
  - Running production at 400 MHz/100% reprod.
- RBRC 12,288 nodes -- \$5M 3-5 Tflops sustained.
  - Installed at BNL 2/05.
  - 1/3 in production/100% reprod.
  - 1/3 performing physics tests.
  - 1/3 speed sorting 420.
- DOE 12,288 nodes -- \$5.1M 3-5 Tflops sustained
  - Installed at BNL 4/05.
  - 1/2 performing physics tests.
  - 1/2 being debugged.
- Price/performance of ~\$1/Mflops.

# Final Bring-up issues

- FPU errors
  - Lowest two bits infrequently incorrect (not seen at 400MHz).
  - Remove slow nodes at 432MHz and run at 400MHz.
- Serial communication errors.
  - Induced by Ethernet activity.
  - 0.25/month at 400 MHz/1K nodes.
  - Further reduced by PLL tuning.
  - Protected by hardware checksums with no performance loss.

- Parallel disk system
  - 24 Tbyte RAID servers.
  - 512-nodes achieve 12 Mbytes/sec.
  - Installed 05/05?
- Larger machine partitions
  - Three 4096-node partitions assembled.
  - Expect to run as 4096 + 8192 node machines.
- Spares
  - 1% non-functioning daughter boards
  - 1.5% non-functioning mother boards
  - ~18 mother boards for small jobs/code development.

### **Application Performance**

(double precision)

#### 1024-node machine:

| Fermion action | Local<br>volume | Dirac<br>performance | CG performance |
|----------------|-----------------|----------------------|----------------|
| Wilson         | $2^{4}$         | 44%                  | 32%            |
| Wilson         | 4 <sup>4</sup>  | 44%                  | 38%            |
| Clover         | 44              | 54%                  | 47.5%          |
| DWF            | 4 <sup>5</sup>  | 47%                  | 42%            |
| ASQTAD         | 4 <sup>4</sup>  | 42%                  | 40%            |

### 4096-node machine (UKQCD):

| DWF/24 <sup>3</sup> x 64/RHMC | CG:            | 1.1 Tflops (34%)  |
|-------------------------------|----------------|-------------------|
| (Local vol: 6x6x6x2x8)        | Complete code: | 0.95 Tflops (29%) |

# **QCDOC Summary**

- Present DOE QCDOC machine use:
  - Alpha users developing code on 1 mother board machines.
  - MILC (staggered 2+1 flavor) using 1K-node machine.
  - JLAB (DWF 2+1 flavor) using 1K-node machine.
  - RBC/BNL (QCD thermo) using 2, 1K-node machines.
  - RBC (DWF) using 1K-node machine.
- 4K node machine being debugged for MILC use.
- Most of machine in production by early June?

## The Future: QCDOC++

- Reduced feature size and increased integration permits many nodes per chip (multi-core trend).
- QCDOC  $\rightarrow$  QCDOC++

```
- Clock speed (GHz): 0.4 \rightarrow 1?
```

- Integration (nodes/chip):  $1 \rightarrow 64$ ?
- Performance (Gflops):  $0.4 \rightarrow 2$ ?
- Inter-node comms (Gbyte/sec):  $1 \rightarrow 10$ ?
- On chip memory (Mbytes/chip):  $4 \rightarrow 32$ ?
- Target: \$0.01/Mflops price performance (1/100 x QCDOC).
- 100x speed-up permits increased 2x problem size per chip.
- Design starts 2006 (with off-project support).
- Target is ambitious with risk. May provide a candidate production machine in 2009.